Attenuation estimations using envelope echo data: analysis and simulations.
نویسندگان
چکیده
Previously we described a video signal analysis (VSA) method for measuring backscatter and attenuation from B-Mode image data. VSA computes depth-dependent ratios of the mean echo intensity from a sample to the mean echo intensity from a reference phantom imaged using identical scanner settings. The slope of a line-fit of this ratio (expressed in dB) versus depth is related to the attenuation of the sample. This paper investigates conditions for which the echo intensity ratio versus depth is independent of transducer pulsing characteristics and instrument settings, and depends only on the properties of the sample and the reference. A theoretical model is described for the echo signal power versus depth from a uniform medium containing scatterers. The model incorporates bandwidth, frequency and media attenuation. Results show that the sample-to-reference echo intensity ratio versus depth is a curve, the departure of which from a straight line is a function of the relative attenuation of the two media, the imaging system bandwidth and the initial frequency. The model also leads to a depth-dependent "effective frequency" determination in the VSA method. Model predictions are verified using RF signals computed by an acoustic pulse-echo simulation program.
منابع مشابه
Rain Attenuation Prediction at Ku Band Using Satellite Signal Beacon Measurement in Iran
In this paper satellite wave propagation at Ku and Ka band is considered. The design and simulation of a typical satellite beacon receiver at Ka band is designed and simulated for the future works. Also rain attenuation prediction at Ku band using satellite signal beacon measurement and simulations for Iran Telecommunication Research Center (ITRC) are presented. The measurement setup consists o...
متن کاملFeasibility of mitral flow assessment by echo-contrast ultrasound, part I: determination of the properties of echo-contrast agents.
Data on the ultrasonic properties of commercially available contrast agents are limited by being instrument-dependent, especially with regard to their backscattering properties. The present work describes methods of measurements that provide instrument-independent estimations of a contrast agent's attenuation coefficient and integrated backscatter index and provide them as functions of its conc...
متن کاملAnalysis and classification of broadband echoes using bio-inspired dolphin pulses.
To date most sonars use narrow band pulses and often only the echo envelope is used for object detection and classification. This paper considers the advantages afforded by bio-inspired sonar for object identification and classification through the analysis and the understanding of the broadband echo structure. Using the biomimetic dolphin based sonar system in conjunction with bio-inspired pul...
متن کاملRemote sensing of sediment characteristics by optimized echo-envelope matching.
A sediment geoacoustic parameter estimation technique is described which compares bottom returns, measured by a calibrated monostatic sonar oriented within 15 degrees of vertical and having a 10 degree-21 degree beamwidth, with an echo envelope model based on high-frequency (10-100 kHz) incoherent backscatter theory and sediment properties such as: mean grain size, strength, and exponent of the...
متن کاملPoisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods
This paper focuses on different methods of estimation and forecasting in first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1)) marginal distribution. For this purpose, the parameters of the model are estimated using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover, Bayesian and sieve bootstrap forecasting methods are proposed and predict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasound in medicine & biology
دوره 32 3 شماره
صفحات -
تاریخ انتشار 2006